RemoteJudge 服务中断情况公告
  • 板块站务版
  • 楼主洛谷
  • 当前回复4298
  • 已保存回复4317
  • 发布时间2023/4/19 15:12
  • 上次更新2025/9/6 09:50:36
查看原帖
RemoteJudge 服务中断情况公告
3
洛谷楼主2023/4/19 15:12

感谢用户提供的建议,根据洛谷的 RMJ 评测量评估、目前的情况以及实践测试,以下方案认为不可行:

  • 用户给出评测 id 之后,爬取提交状态
  • 洛谷在 vjudge 上开 bot,借助 vjudge 通道评测
  • 限制绑定了 CF/AT 账户的用户提交

以下方案具有可行性,但是需要我们一定的时间处理:

  • 截止 2024 年下半年,AtCoder 公布了其比赛数据,可以通过配置比赛数据的方式评测 2024 年下半年之前的 AtCoder 试题。

近期包括洛谷在内的多个 OJ 加强了其防御服务的强度,以避免大量 AI 和爬虫对网站造成的危害,导致洛谷爬虫无法顺利爬取提交记录。

再次强调,RemoteJudge 服务的稳定性无法得到保证,它只是为了方便大家更顺畅地提交国外 OJ。但由于各种原因,我们无法保证这项服务的稳定性。我们会尽力保证题目爬取的稳定性,至少能够提供稳定的中文题面和题解,以便用户训练。

更多详细信息请参考:https://help.luogu.com.cn/manual/luogu/problem/remote-judge

2023/4/19 15:12
1104916
guoyikai2025/8/25 19:15

qp哀悼

2025/8/25 19:15
1273823
nieyutong2025/8/26 08:26

哀悼

2025/8/26 08:26
1186739
Ymy12012025/8/26 09:22

qp哀悼
验证码:qphp

2025/8/26 09:22
751367
ev_____2025/8/26 09:24

qp哀悼

2025/8/26 09:24
1149038
wmoia2025/8/26 10:15

hp哀悼

2025/8/26 10:15
1812845
fuhanyu2025/8/26 10:45
2025/8/26 10:45
1673664
a134696998762025/8/26 11:38

qp

2025/8/26 11:38
1811330
chenxiCHN012025/8/26 12:19

哎,希望能赶快回复

2025/8/26 12:19
1784241
WalkerShi_2025/8/26 13:22

第4200条评论!

2025/8/26 13:22
1350875
xiaoyouyou662025/8/26 13:53

用三角函数歌默哀 RMG

When you first study math about 1234.
First study equation about xyzt.
It will help you think in a logical way.
When you sing sine cosine tangent.
Sine cosine tangent cotangent.
Sine cosine secant cosecant.
Let’s sing a song about trig-functions.
sin(2π+α)=sinα\sin(2 \pi+\alpha)=\sin \alpha
cos(2π+α)=cosα\cos(2 \pi+\alpha)=\cos \alpha
tan(2π+α)=tanα\tan(2 \pi+\alpha)=\tan \alpha
Which is induction formula 11 and induction formula 22.
sin(π+α)=sinα\sin(\pi+\alpha)=- \sin \alpha
cos(π+α)=cosα\cos(\pi+\alpha)=-\cos \alpha
tan(π+α)=tanα\tan(\pi+\alpha)=\tan \alpha
sin(πα)=sinα\sin(\pi-\alpha)=\sin \alpha
cos(πα)=cosα\cos(\pi-\alpha)=-\cos \alpha
tan(πα)=tanα.\tan(\pi-\alpha)=-\tan \alpha.
These are all those "name do not change",
As pi goes to half pi the difference shall be huge.
sin(π2+α)=cosα\sin(\displaystyle \frac{\pi}{2} + \alpha) = cos \alpha

sin(π2α)=cosα.\sin(\displaystyle \frac{\pi}{2}-\alpha)=\cos \alpha.

cos(π2+α)=sinα\cos(\displaystyle \frac{\pi}{2}+\alpha)=-sin\alpha

cos(π2α)=sinα.\cos(\displaystyle \frac{\pi}{2}-\alpha)=sin\alpha.

tan(π2+α)=cotα\tan(\displaystyle \frac{\pi}{2}+\alpha)=-cot \alpha

tan(π2α)=cotα.\tan(\displaystyle \frac{\pi}{2}-\alpha)=cot \alpha.
That is to say the odds will change evens are conserved,
The notations that they get depend on where they are.
But no matter where you are,
I'd like say that,
If you were my sine curve,I'd be your cosine curve.
I will be you derivative you will be my negative one.
As you change you amplitute,I change my phase.
We can oscillate freely in the external space.
As we chaange our period and constant at hand.
We tracel from the origin to infinity.
It's you sine and if you cosine,
Who make charming music around the world.
It's you tangent cotangent,
Who proclaim the true meaning of centrosymmetry.

You wanna measure width of a river height of a tower.
You scratch your head which cost you more than an hour.
You don't need to ask any "goods" or "master" for help.
These group of formulasare gonna help you solve.
sin(α+β)=sinαcosβ+cosαsinβ\sin(\alpha + \beta)=\sin\alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta
cos(α+β)=cosαcosβsinαsinβ\cos(\alpha+\beta)=\cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta
tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha+\beta)=\displaystyle \frac{\tan \alpha + \tan \beta}{1-\tan \alpha \cdot \tan \beta}
sin(αβ)=sinαcosβcosαsinβ\sin(\alpha - \beta)=\sin\alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta
cos(αβ)=cosαcosβ+sinαsinβ\cos(\alpha - \beta)=\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta
tan(αβ)=tanαtanβ1+tanαtanβ\tan(\alpha - \beta)=\displaystyle \frac{\tan \alpha - \tan \beta}{1+\tan \alpha \cdot \tan \beta}
As you come across a right triangle you feel easy to solve.
But an obuse triangle gonna make you feel confused.
Don't worry about what you do.
There are always means to solve.
As long as you master the sine cosine law.
As this moment I've got nothing to say.
As trig-functions rain down upon me.
As this moment I've got nothing to say.
Let's sing a song about trig-functions.
Long live the trigonometric functions.

2025/8/26 13:53