有一颗NNN个结点的树,N−1N-1N−1条边,节点编号111到NNN,第iii条边连接节点a[i]a[i]a[i]和b[i]b[i]b[i]。有KKK种颜色,对于每个节点,选用一种颜色涂色,目的要满足以下条件:如果两个节点的距离小于等于222,则它们的节点不得相同,问这棵树与多少种合法的涂色方案?答案对109+710^9+7109+7去摸后输出。
输入
第一行两个整数NNN和KKK。接下来N−1N-1N−1行,每行两个整数,表示a[i]a[i]a[i]和b[i]b[i]b[i]
样例输入#1
4 3
1 2
2 3
3 4
4 5
样例输出#1
6
1<=N,K<=1051<=N,K<=10^51<=N,K<=105
1<=a[i],b[i]<=N1<=a[i],b[i]<=N1<=a[i],b[i]<=N