最后一个点死活过不去(,想知道是纯粹的常数大还是复杂度问题,常数大的话回去写树状数组了(
#include<bits/stdc++.h>
#define LL long long
#define _ 0
#define R register
// #define AME__DEBUG
using namespace std;
// #define AME__
/*Grievous Lady*/
const int BUF_SIZE = 1 << 12;
char buf[BUF_SIZE] , *buf_s = buf , *buf_t = buf + 1;
#define PTR_NEXT() \
{ \
buf_s ++; \
if(buf_s == buf_t) \
{ \
buf_s = buf; \
buf_t = buf + fread(buf , 1 , BUF_SIZE , stdin); \
} \
}
template <typename _m_> inline void mian(_m_ & _n_){
LL _x_ = 0 , _nega_ = 0;
while(*buf_s != '-' && !isdigit(*buf_s)) PTR_NEXT(); if(*buf_s == '-'){_nega_ = 1; PTR_NEXT();}
while(isdigit(*buf_s)){_x_ = _x_ * 10 + *buf_s - '0'; PTR_NEXT();} if(_nega_) _x_ = -_x_; (_n_) = (_x_);
}
inline void put(LL x){
if (! x) putchar('0');
if (x < 0) putchar('-'), x = -x;
int num(0); char c[66];
while (x) c[++ num] = x % 10 + 48, x /= 10;
while (num) putchar(c[num --]);
return (void)(putchar('\n'));
}
// #define int long long
template <typename _n_> bool cmax(_n_ &a , const _n_ &b){ return a < b ? a = b , 1 : 0; }
template <typename _n_> bool cmin(_n_ &a , const _n_ &b){ return a > b ? a = b , 1 : 0; }
const int kato = 2e7 + 10;
const int atri = 2e7;
inline int quick_pow(int a , int b , int mod){
R int res = 1;
for(; b ; b >>= 1 , a = 1LL * a * a % mod){
if(b & 1){
res = 1LL * res * a % mod;
}
}
return res;
}
LL n , m , cnt , opt , l , r , p , phi[kato] , prime[kato];
bool ispri[kato];
struct tree{
protected:
struct node{
node *ch[2];
int l , r;
LL sum , tag;
node(int l = 0 , int r = 0 , LL sum = 0 , LL tag = 0): l(l) , r(r) , sum(sum) , tag(tag){
ch[0] = ch[1] = NULL;
}
inline int mid(){
return (l + r) >> 1;
}
inline void up(){
sum = ch[0] -> sum + ch[1] -> sum;
}
inline void add_val(LL v){
tag += v , sum += 1LL * (r - l + 1) * v;
}
inline void down(){
if(tag){
ch[0] -> add_val(tag) , ch[1] -> add_val(tag) , tag = 0;
}
}
}*root;
inline void build(node *&o , int l , int r){
o = new node(l , r);
if(l == r){
mian(o -> sum);
return;
}
build(o -> ch[0] , l , o -> mid()); build(o -> ch[1] , o -> mid() + 1 , r);
o -> up();
}
inline void Modify(node *o , int l , int r , int val){
if(l <= o -> l && o -> r <= r){
o -> add_val(val);
return;
}
o -> down();
if(l <= o -> mid()){
Modify(o -> ch[0] , l , r , val);
}
if(r > o -> mid()){
Modify(o -> ch[1] , l , r , val);
}
o -> up();
}
inline LL ask(node *o , int l , int r){
if(l <= o -> l && o -> r <= r){
return o -> sum;
}
o -> down(); R LL res = 0;
if(l <= o -> mid()){
res += ask(o -> ch[0] , l , r);
}
if(r > o -> mid()){
res += ask(o -> ch[1] , l , r);
}
return res;
}
public:
inline void build(int n){
build(root , 1 , n);
}
inline void Modify(LL l , LL r , LL val){
Modify(root , l , r , val);
}
inline LL ask(LL x){
return ask(root , x , x);
}
}yuni;
inline LL quick_pow_(LL a , LL b , LL mod){
if(a > INT_MAX) return -1;
R LL res = 1;
for(; b ; b >>= 1 , a = a * a){
if(b & 1){
if(res * a >= mod) return -1;
res = res * a;
}
if(b > 1 && a * a >= mod) return -1;
}
return res;
}
inline bool check(int l , int r , int mod){
if(r - l + 1 == 5) return 1;
R LL res = yuni.ask(r);
if(res >= mod) return 1;
for(R int i = r - 1 ; i >= l ; i --){
R int res_ = quick_pow_(yuni.ask(i) , res , mod);
if(res_ == -1) return 1;
res = res_;
}
return 0;
}
int phi_(int l , int r , int mod){
if(mod == 1) return 0;
if(l == r) return yuni.ask(l) % mod;
R LL tmp = phi_(l + 1 , r , phi[mod]) , pos = l + 1;
while(pos <= r && yuni.ask(pos) != 1 && pos - l < 6) pos ++;
if(pos == l + 1 ? phi[mod] <= 1 : check(l + 1 , pos - 1, phi[mod]))
return quick_pow(yuni.ask(l) % mod , tmp + phi[mod] , mod);
else return quick_pow(yuni.ask(l) % mod , tmp , mod);
}
inline void pri(){
for(R int i = 2;i <= atri;i ++){
if(!ispri[i]){
prime[++ cnt] = i;
phi[i] = i - 1;
}
for(R int j = 1;j <= cnt && i * prime[j] <= atri;j ++){
ispri[i * prime[j]] = 1;
if(i % prime[j] == 0){
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
inline int Ame_(){
#ifdef AME__
freopen("zzq.in" , "r" , stdin); freopen("zzq.out" , "w" , stdout);
#endif
mian(n) , mian(m);
pri();
yuni.build(n);
for(; m --> 0 ;){
mian(opt) , mian(l) , mian(r) , mian(p);
if(opt == 1) yuni.Modify(l , r , p);
if(opt == 2) put(phi_(l , r , p));
}
// fclose(stdin); fclose(stdout);
return ~~(0^_^0);
}
int Ame__ = Ame_();
signed main(){;}
/*
5 5
2 3 3 3 3
1 1 1 530739835
2 1 1 8356089
2 1 4 5496738
1 1 2 66050181
1 2 4 138625417
*/
/*
6 4
1 2 3 4 5 6
2 1 2 10000007
2 2 3 5
1 1 4 1
2 2 4 10
*/