萌新求助,可持久化可并堆WA48pts
查看原帖
萌新求助,可持久化可并堆WA48pts
226485
柳苏明楼主2020/9/16 20:50

检查过了快读没有锅,但是有几个点就是比标准输出小。求dalao帮助。

#include <cstdio>
#include <cctype>
#include <cstring>
#include <queue>
#include <utility>
#include <cmath>

namespace quick {
#define tp template<typename Type>
	namespace in {
		inline char getc() {
			static char buf[1<<21],*p1=buf,*p2=buf;
			return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;
		}
		inline int read(char *s) {
			*s=getc();
			while(isspace(*s)) {*s=getc();if(*s==EOF) return 0;}
			while(!isspace(*s)&&*s!=EOF) {s++;*s=getc();}
			*s='\0'; return 1;
		}
		inline int read(double &x) {
			x=0;bool k=false;double d=1;char c=getc();
			while(!isdigit(c)) {k|=(c=='-');c=getc();if(c==EOF) return 0;}
			while(isdigit(c)) {x=x*10+(c^48);c=getc();}
			if(c!='.') return 1;
			c=getc();
			while(isdigit(c)) {d/=10.0;x+=d*(c^48);c=getc();}
			x*=(k?-1.0:1.0); return 1;
		}
		tp inline int read(Type &x) {
			x=0;bool k=false;char c=getc();
			while(!isdigit(c)) {k|=(c=='-');c=getc();if(c==EOF) return 0;}
			while(isdigit(c)) {x=(x<<1)+(x<<3)+(c^48);c=getc();}
			x*=(k?-1:1); return 1;
		}
		template <typename Type,typename... Args>
		inline int read(Type &t,Args &...args) {
			int res=0;
			res+=read(t);res+=read(args...);
			return res;
		}
	}
	using in::read;
	namespace out {
		char buf[1<<21];int p1=-1;const int p2=(1<<21)-1;
		inline void flush() {
			fwrite(buf,1,p1+1,stdout);
			p1=-1;
		}
		inline void putc(const char &c) {
			if(p1==p2) flush();
			buf[++p1]=c;
		}
		inline void write(char *s) {
			while(*s!='\0') putc(*s),s++;
		}
		inline void write(const char *s) {
			while(*s!='\0') putc(*s),s++;
		}
		tp inline void write(Type x) {
			static char buf[30];int p=-1;
			if(x<0) {putc('-');x=-x;}
			if(x==0) putc('0');
			else for(;x;x/=10) buf[++p]=x%10+48;
			for(;p!=-1;p--) putc(buf[p]);
		}
		inline void write(const char &c) {putc(c);}
		template <typename Type,typename... Args>
		inline void write(Type t,Args ...args) {
			write(t);write(args...);
		}
	}
	using out::write;
	using out::flush;
	tp inline Type max(const Type &a,const Type &b) {
		if(a<b) return b;
		return a;
	}
	tp inline Type min(const Type &a,const Type &b) {
		if(a<b) return a;
		return b;
	}
	tp inline void swap(Type &a,Type &b) {
		a^=b^=a^=b;
	}
	tp inline Type abs(const Type &a) {
		return a>=0?a:-a;
	}
#undef tp
}
using namespace quick;

const int maxn=5000+10,maxm=200000+10;
int n,m;
double e;

struct Graph {
	struct Edge {
		int v,next;
		double w;
		Edge(const int &v,const int &next,const double &w)
			:v(v),next(next),w(w) {}
		Edge() {}
	}e[maxm];
	int head[maxn],cnt;
	inline int AddEdge(const int &u,const int &v,const double &w) {
		e[++cnt]=Edge(v,head[u],w);
		head[u]=cnt;
		return cnt;
	}
}g1,g2;
int id[maxm];
inline void AddEdge(const int &u,const int &v,const double &w) {
	id[g2.AddEdge(v,u,w)]=g1.AddEdge(u,v,w);
}

namespace LeftistTree {
#define lc(i) st[i].ch[0]
#define rc(i) st[i].ch[1]
	struct Node {
		double val;
		int ch[2],dist,v;//v记录出边
		Node(const double &val,const int &v) :val(val),v(v) {
			this->ch[0]=this->ch[1]=this->dist=0;
		}
		Node() {}
	}st[maxn<<8];
	int cnt;
	int Merge(int x,int y) {
		if(!x||!y) return x|y;
		if(st[x].val>st[y].val) swap(x,y);
		int cur=++cnt;
		st[cur]=st[x];
		rc(cur)=Merge(rc(cur),y);
		if(st[lc(cur)].dist<st[rc(cur)].dist) swap(lc(cur),rc(cur));
		st[cur].dist=st[rc(cur)].dist+1;
		return cur;
	}
	inline int Push(const int &x,const double &val,const int &v) {
		static int cur;
		st[cur=++cnt]=Node(val,v);
		return Merge(x,cur);
	}
#undef lc
#undef rc
}
using LeftistTree::st;
int root[maxn];

const double eps=1e-10;
inline int fcmp(const double &x) {
	if(fabs(x)<=eps) return 0;
	if(x>eps) return 1;
	return -1;
}

int s,t;
typedef std::pair<double,int> pii;
int fa[maxn],fae[maxn];
double d[maxn];
void Dijkstra(const int &s=::s,const int &t=::t) {
	static char vis[maxn];
	static std::priority_queue< pii, std::vector<pii>, std::greater<pii> > q;
	memset(d,0x43,sizeof d);
	memset(vis,0x0,sizeof vis);
	d[t]=0.0;
	q.push(std::make_pair(d[t],t));
	while(!q.empty()) {
		int u=q.top().second;
		q.pop();
		if(!~vis[u]) continue;
		vis[u]=0xff;
		for(int i(g2.head[u]);i;i=g2.e[i].next) {
			const int &v=g2.e[i].v;
			if(fcmp(d[v]-d[u]-g2.e[i].w)>0) {
				d[v]=d[u]+g2.e[i].w;
				q.push(std::make_pair(d[v],v));
				fa[v]=u;
				fae[v]=id[i];
			}
		}
	}
}

void Dfs(const int &u) {
	if(fa[u]) root[u]=root[fa[u]];
	for(int i(g1.head[u]);i;i=g1.e[i].next) {
		const int &v=g1.e[i].v;
		if(v==fa[u]) continue;
		root[u]=LeftistTree::Push(root[u],d[v]-d[u]+g1.e[i].w,v);
	}
	for(int i(g2.head[u]);i;i=g2.e[i].next) {
		const int &v=g2.e[i].v;
		if(fae[v]==id[i]) Dfs(v);
	}
}

int Solve() {
	Dijkstra();
	if(fcmp(e-d[s])<0) return 0;
	int ans=1;
	e-=d[s];
	Dfs(t);
	static std::priority_queue< pii, std::vector<pii>, std::greater<pii> > q;
	q.push(std::make_pair(d[s]+st[root[s]].val,root[s]));
	while(!q.empty()) {
		int u=q.top().second;
		double len=q.top().first;
		q.pop();
		if(fcmp(e-len)>=0) e-=len,ans++;
		else return ans;
		int v=root[st[u].v],lc=st[u].ch[0],rc=st[u].ch[1];
		if(v) q.push(std::make_pair(len+st[v].val,v));
		if(lc) q.push(std::make_pair(len-st[u].val+st[lc].val,lc));
		if(rc) q.push(std::make_pair(len-st[u].val+st[rc].val,rc));
	}
	return ans;
}

int main(void) {
#ifndef ONLINE_JUDGE
	freopen("kth.in","r",stdin);
#endif
	read(n,m,e);
	s=1,t=n;
	for(int i(1);i<=m;i++) {
		int u,v;double w;
		read(u,v,w);
		AddEdge(u,v,w);
	}
	write(Solve(),'\n');
	flush();
	return 0;
}

2020/9/16 20:50
加载中...