【Mathmatics】求找错/kk
  • 板块学术版
  • 楼主Dreamsuzki
  • 当前回复44
  • 已保存回复44
  • 发布时间2020/6/28 12:06
  • 上次更新2023/11/6 23:57:48
查看原帖
【Mathmatics】求找错/kk
216438
Dreamsuzki楼主2020/6/28 12:06

上次问了一个题目,非常感谢 蒟蒻365 (其实是神犇)为我解答,这次弱弱的我又来提问了:

------------

题目:

已知(3+i)m=(1+i)n,m,nZ+(\sqrt{3}+i)^m=(1+i)^n,m,n\in Z^+,则 mnmn 的最小值为_____

我的解答:

(3+i)m=[2(32+i2)]m=[2(cosπ6+isinπ6)]m=2m(cos(π6m)+isin(π6m))(\sqrt{3}+i)^m=[2(\frac{\sqrt{3}}{2}+\frac{i}{2})]^m=[2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})]^m=2^m(\cos(\frac{\pi}{6}m)+i\sin(\frac{\pi}{6}m))

(1+i)n=[2(22+22i)]n=[2(cosπ4+isinπ4)]n=2n(cos(π4n)+isin(π4n))(1+i)^n=[\sqrt{2}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)]^n=[2(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4})]^n=\sqrt{2}^n(\cos(\frac{\pi}{4}n)+i\sin(\frac{\pi}{4}n))

2m(cos(π6m)+isin(π6m))=2n(cos(π4n)+isin(π4n))\therefore2^m(\cos(\frac{\pi}{6}m)+i\sin(\frac{\pi}{6}m))=\sqrt{2}^n(\cos(\frac{\pi}{4}n)+i\sin(\frac{\pi}{4}n))

{2m(cos(π6m))=2n(cos(π4n))12m(sin(π6m))=2n(sin(π4n))2\therefore\begin{cases}2^m(\cos(\frac{\pi}{6}m))=\sqrt{2}^n(\cos(\frac{\pi}{4}n))\cdots1\\2^m(\sin(\frac{\pi}{6}m))=\sqrt{2}^n(\sin(\frac{\pi}{4}n))\cdots2\end{cases}

2式除以1式:tan(π6m)=tan(π4n)\tan(\frac{\pi}{6}m)=\tan(\frac{\pi}{4}n)

π6m=π4n+kπ,kZm6=n4+k,kZ122m3n\therefore\frac{\pi}{6}m=\frac{\pi}{4}n+k\pi,k\in Z\rightarrow\frac{m}{6}=\frac{n}{4}+k,k\in Z\rightarrow12|2m-3n

1式 * 1式 + 2式 * 2式:n=2mn=2m

124n3nnmin=6\therefore12|-4n\rightarrow3|n\rightarrow n_{min}=6,此时m=3,nmmin=18m=3,nm_{min}=18

但正确答案是72,不知道我哪里错了QwQQwQ

求查错

2020/6/28 12:06
加载中...