∫0π2x2ln(sin(x))ln(cos(x))dx\int_0^{\frac{\pi}{2}}{x^2 \ln(\sin(x))\ln(\cos(x))\text{d}x}∫02πx2ln(sin(x))ln(cos(x))dx
这就是昨天那道题的原题。= =
搞了半天搞出了一个欧拉和,感觉把难度拔高了 = =
讨论地址
看看有没有什么好方法/kk
答案给出来
∫0π2x2log(sin(x))log(cos(x))dx=π316log2(2)+π5320−38log(2)ζ(3)−π48log4(2)−12Li4(12)\int_0^{\frac{\pi}{2}}{x^2\log \left( \sin \left( x \right) \right) \log \left(\cos \left( x \right) \right) \text{d}x}=\frac{\pi ^3}{16}\log ^2\left( 2 \right) +\frac{\pi ^5}{320}-\frac{3}{8}\log \left( 2 \right) \zeta \left( 3 \right) -\frac{\pi}{48}\log ^4\left( 2 \right) -\frac{1}{2}\text{Li}_4\left( \frac{1}{2} \right) ∫02πx2log(sin(x))log(cos(x))dx=16π3log2(2)+320π5−83log(2)ζ(3)−48πlog4(2)−21Li4(21)