方案一:
1+2+3+⋯+n=2n×(n+1)
1×21+2×31+⋯+(n−1)×n1=1−n1
1×2×⋯×m1+2×3×⋯×(m+1)1+⋯+n×(n+1)×⋯×(n+m−1)1=S
$$1+2+3+ \cdots +n= \frac{n \times (n+1)}{2}$$
$$\frac{1}{1\times 2}+\frac{1}{2\times 3}+\cdots+\frac{1}{(n-1)\times n}=1-\frac{1}{n}$$
$$\frac{1}{1 \times 2 \times \cdots \times m}+\frac{1}{2 \times 3\times \cdots \times (m+1)}+\cdots+\frac{1}{n\times (n+1) \times \cdots \times (n+m-1)} = S$$
方案2:
∑i=1ni=2n×(n+1)
∑i=1n−1i×(i+1)1=1−n1
∑i=1n∏j=ii+m−1j1=S
$$\sum_{i=1}^n i= \frac{n \times (n+1)}{2}$$
$$\sum_{i=1}^{n-1} \frac{1}{i\times (i+1)}=1-\frac{1}{n}$$
$$\sum_{i=1}^n \frac{1}{\prod_{j=i}^{i+m-1}j}=S$$