题面LaTeX化
  • 板块P1625 求和
  • 楼主saxiy
  • 当前回复6
  • 已保存回复6
  • 发布时间2019/8/28 15:28
  • 上次更新2025/7/21 16:31:05
查看原帖
题面LaTeX化
133236
saxiy楼主2019/8/28 15:28

方案一: 1+2+3++n=n×(n+1)21+2+3+ \cdots +n= \frac{n \times (n+1)}{2}

11×2+12×3++1(n1)×n=11n\frac{1}{1\times 2}+\frac{1}{2\times 3}+\cdots+\frac{1}{(n-1)\times n}=1-\frac{1}{n}

11×2××m+12×3××(m+1)++1n×(n+1)××(n+m1)=S\frac{1}{1 \times 2 \times \cdots \times m}+\frac{1}{2 \times 3\times \cdots \times (m+1)}+\cdots+\frac{1}{n\times (n+1) \times \cdots \times (n+m-1)} = S

$$1+2+3+ \cdots +n= \frac{n \times (n+1)}{2}$$

$$\frac{1}{1\times 2}+\frac{1}{2\times 3}+\cdots+\frac{1}{(n-1)\times n}=1-\frac{1}{n}$$

$$\frac{1}{1 \times 2 \times \cdots \times m}+\frac{1}{2 \times 3\times \cdots \times (m+1)}+\cdots+\frac{1}{n\times (n+1) \times \cdots \times (n+m-1)} = S$$

方案2: i=1ni=n×(n+1)2\sum_{i=1}^n i= \frac{n \times (n+1)}{2}

i=1n11i×(i+1)=11n\sum_{i=1}^{n-1} \frac{1}{i\times (i+1)}=1-\frac{1}{n}

i=1n1j=ii+m1j=S\sum_{i=1}^n \frac{1}{\prod_{j=i}^{i+m-1}j}=S

$$\sum_{i=1}^n i= \frac{n \times (n+1)}{2}$$

$$\sum_{i=1}^{n-1} \frac{1}{i\times (i+1)}=1-\frac{1}{n}$$

$$\sum_{i=1}^n \frac{1}{\prod_{j=i}^{i+m-1}j}=S$$
2019/8/28 15:28
加载中...