#include<bits/stdc++.h>
using namespace std;
const int N = 310;
int w[N],p[N][N],o[N];
int n,pos;
long long res;
struct E{
int a;
int b;
int w;
bool operator < (const E& rhs){
return this->w < rhs.w;
}
}edg[N*N+N];
int find(int a){
if(o[a] != a && o[a] != -1) o[a] = find(o[a]);
return o[a];
}
void klskr(){
for(int i = 0; i < pos; i++){
//其他的代码和kruscal一样,就加了这一部分,来判断取井,我这里设置井的两个端点一样,所以可以判断是否为井,一旦取井则说明这条路上(并查集)中都可以实现,所以就用-1表示
if(edg[i].a == edg[i].b){
int pa = find(edg[i].a);
if(pa != -1){
res += edg[i].w;
//printf("%d\n",edg[i].w);
o[pa] = -1;
}
}else{
int pa = find(edg[i].a);
int pb = find(edg[i].b);
if(pa != pb){
res += edg[i].w;
//printf("%d\n",edg[i].w);
o[pa] = pb;
}
}
}
}
int main(){
cin>>n;
for(int i = 0; i < n; i++){
o[i] = i;
cin>>w[i];
edg[i] = {i,i,w[i]};
}
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++) cin>>p[i][j];
}
pos = n;
for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){
edg[pos++] = {i,j,p[i][j]};
}
}
sort(edg,edg+pos);
klskr();
printf("%lld",res);
return 0;
}