NOIP2017 D2T3
Sylvia
是一个热爱学习的女孩子。
前段时间,Sylvia
参加了学校的军训。众所周知,军训的时候需要站方阵。
Sylvia 所在的方阵中有 n×m 名学生,方阵的行数为 n,列数为 m。
为了便于管理,教官在训练开始时,按照从前到后,从左到右的顺序给方阵中 的学生从 1 到 n×m 编上了号码(参见后面的样例)。即:初始时,第 i 行第 j 列 的学生的编号是 (i−1)×m+j。
然而在练习方阵的时候,经常会有学生因为各种各样的事情需要离队。在一天 中,一共发生了 q 件这样的离队事件。每一次离队事件可以用数对 (x,y)(1≤x≤n,1≤y≤m) 描述,表示第 x 行第 y 列的学生离队。
在有学生离队后,队伍中出现了一个空位。为了队伍的整齐,教官会依次下达 这样的两条指令:
教官规定不能有两个或更多学生同时离队。即在前一个离队的学生归队之后, 下一个学生才能离队。因此在每一个离队的学生要归队时,队伍中有且仅有第 n 行 第 m 列一个空位,这时这个学生会自然地填补到这个位置。
因为站方阵真的很无聊,所以 Sylvia
想要计算每一次离队事件中,离队的同学 的编号是多少。
注意:每一个同学的编号不会随着离队事件的发生而改变,在发生离队事件后 方阵中同学的编号可能是乱序的。
输入共 q+1 行。
第一行包含 3 个用空格分隔的正整数 n,m,q,表示方阵大小是 n 行 m 列,一共发 生了 q 次事件。
接下来 q 行按照事件发生顺序描述了 q 件事件。每一行是两个整数 x,y,用一个空 格分隔,表示这个离队事件中离队的学生当时排在第 x 行第 y 列。
按照事件输入的顺序,每一个事件输出一行一个整数,表示这个离队事件中离队学生的编号。
2 2 3
1 1
2 2
1 2
1
1
4
【输入输出样例 1 说明】
\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} & 2 \\ 3 & 4 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & \\ 3 & 4 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 4 \\ 3 & \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ \end{bmatrix} \\[1em] \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 4 \\ 3 & \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 4 \\ 3 & \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 4 \\ 3 & \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ \end{bmatrix}\\[1em] \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & \\ 3 & 1 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & \\ 3 & 1 \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 1 \\ 3 & \\ \end{bmatrix} & \Rightarrow & \begin{bmatrix} 2 & 1 \\ 3 & 4 \\ \end{bmatrix} \end{matrix}$$ 列队的过程如上图所示,每一行描述了一个事件。 在第一个事件中,编号为 $1$ 的同学离队,这时空位在第一行第一列。接着所有同学 向左标齐,这时编号为 $2$ 的同学向左移动一步,空位移动到第一行第二列。然后所有同 学向上标齐,这时编号为 $4$ 的同学向上一步,这时空位移动到第二行第二列。最后编号为 $1$ 的同学返回填补到空位中。 【数据规模与约定】 | 测试点编号 | $n$ | $m$ | $q$ | 其他约定 | | :----------: | :----------: | :----------: | :----------: | :----------: | | $1\sim 6$ | $\le 10^3$ | $\le 10^3$ | $\le 500$ | 无 | | $7\sim 10$ | $\le 5\times 10^4$ | $\le 5\times 10^4$ | $\le 500$ | 无 | | $11\sim 12$ | $=1$ | $\le 10^5$ | $\le 10^5$ | 所有事件 $x=1$ | | $13\sim 14$ | $=1$ | $\le 3\times 10^5$ | $\le 3\times 10^5$ | 所有事件 $x=1$ | | $15\sim 16$ | $\le 3\times 10^5$ | $\le 3\times 10^5$ | $\le 3\times 10^5$ | 所有事件 $x=1$ | | $17\sim 18$ | $\le 10^5$ | $\le 10^5$ | $\le 10^5$ | 无 | | $19\sim 20$ | $\le 3\times 10^5$ | $\le 3\times 10^5$ | $\le 3\times 10^5$ | 无 | 数据保证每一个事件满足 $1 \le x \le n,1 \le y \le m$。 [P3960](https://www.luogu.com.cn/problem/P3960)